Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

First Semester MCA Degree Examination, June/July 2011 Discrete Mathematics

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

1 a. Define set, subset, equal set and power set, with an example each.

(06 Marks)

- b. Prove that:
 - i) $(A \cup B)' = A' \cap B'$
 - ii) $(A \cap B)' = A' \cup B'$
 - iii) $A \cup (A \cap B) = A$.

(06 Marks)

c. In a survey of 100 families the numbers that read the most recent issue of various magazines were found to be as follows:

Reader digest = 28
Reader digest and science today = 8
Science today = 30
Reader digest and caravan = 10
Caravan = 42
Science today and caravan = 5
All the magazines = 3

Find:

- i) How many read none of the three magazines?
- ii) How many read caravan as their only magazine?
- iii) How many read exactly two magazines?

(08 Marks)

- 2 a. Prove by induction $1^2 + 3^2 + 5^2 + \dots + (2n+1)^2 = \frac{(n+1)(2n+2)(2n+3)}{3}$. (07 Marks)
 - b. i) Construct the truth table for proposition $(p \rightarrow q) \land (\sim p \rightarrow r)$.
 - ii) Write the inverse, converse and contra positive for "If two integers are equal then their squares are equal". (07 Marks)
 - c. Show that $p \rightarrow q$ and $q \rightarrow r$ imply $p \rightarrow r$.

(06 Marks)

- 3 a. Define tautology and contradiction. Show that $(\neg p \lor \neg q) \leftrightarrow \neg (p \land q)$ is a tautology and $(\neg p \lor q) \leftrightarrow (p \land \neg q)$ is a contradiction. (06 Marks)
 - b. i) Define principal disjunctive normal form and obtain the PDNF of pv ($\sim p \vee q$).
 - ii) Define principal conjunctive normal form and obtain the PCNF of $(p \land q) \lor (\sim p \lor r)$.

(08 Marks)

- c. If $p(x) = x^2 7x \le 0$ and q(x) : (x 2) < 3, find the truth set $p(x) \land q(x)$. Given that the replacement set being z, the set of all integer. (06 Marks)
- 4 a. Define a relation with an example. If $A = \{1, 2, 3, 4\}$ write the relation of the following:
 - i) $R_1 = \{(a, b) / a \le b\} \ \forall \ a, b \in A$
 - ii) $R_2 = \{(a, b) / a = b\}$
 - iii) $R_3 = \{(a, b) / ab \ge 3\}$
 - iv) $R_4 = \{(a, b) / a^2 + b^2 \le a\}.$

(06 Marks)

- b. If $M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, $M_S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ then find:
 - i) $M_{R \cup S}$; ii) $M_{R \cap S}$; iii) M_{SOR} ; iv) M_R^{-1} . (08 Marks)
- c. Let $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = \{\langle x, y \rangle / x y \text{ is divisible by 3}\}$, show that 'R' is a equivalence relation. (06 Marks)
- 5 a. Define a partially ordered set. Draw the Hasse diagram representing the positive divisor of 45. (06 Marks)
 - b. Define injective function, bijective function and surjective function. Give one example each.
 (06 Marks)
 - c. Define composite function, with an example. If f(x) = x + 2, g(x) = x 2, h(x) = 3x for $x \in R$, where R is the set of real numbers, find: i) fog; ii) fof; iii) hof; iv) fohog.

 (08 Marks)
- 6 a. Define the following, with an example each:
 - i) Simple graph and multi-graph.
 - ii) Directed graph and undirected graph.
 - iii) Finite graph and infinite graph.
 - iv) Euler graph and Hamilton graph.
 - v) Pendent vertex and isolated vertex.

(10 Marks)

- b. Show that:
 - i) The maximum number of edges in a simple graph with 'n' vertices is n(n-1)/2.
 - ii) Every graph contains even number of odd degree vertices. (10 Marks)
- 7 a. Explain the different operations defined on graphs. (10 Marks)
 - b. Define a tree and spanning tree. If G(p, q) is a connected graph and q = p 1, prove that G is a tree. (06 Marks)
 - c. Define coloring and chromatic number of a graph. List the properties of chromatic numbers.

 (04 Marks)
- 8 a. Show that in a group (G, *)
 - i) If a is any element, then $(a^{-1})^{-1} = a$.
 - ii) The identity element is unique. (06 Marks)
 - b. Prove that the set of rational numbers other than 1 forms an abelian group with respect to the binary operation * defined by a * b = a + b ab. (08 Marks)
 - c. If H is a normal subgourp of G and K is any subgroup of G, then prove that HK is a subgroup of G. (06 Marks)

* * * * *

USN

10MCA12

First Semester MCA Degree Examination, June/July 2011 Discrete Mathematics

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. Define the power set of a set. Find the power set of the set $A = \{0, 1, \phi\}$. (04 Marks)
 - b. State and prove the De Morgan's laws of set theory.

(05 Marks)

- c. For any three sets A, B and C, if $A \cap B = B \cap C$ and $A \cup C = B \cup C$ then prove that A = B. (05 Marks)
- d. A computer services company has 300 programmers. It is known that 180 of these can program in PASCAL, 120 in FORTRAN, 30 in C++, 12 in PASCAL and C++, 18 in FORTRAN and C++, 12 in PASCAL and FORTRAN and 6 in all three languages.
 - i) If a programmer is selected at random, what is the probability that she can program in exactly two languages?
 - ii) If two programmers are selected at random, what is the probability that they can both program (A) in PASCAL? (B) only in PASCAL? (06 Marks)
- 2 a. Define the tautology and contradiction. Prove that the compound proposition $[(p \to q) \land (q \to r)] \to (p \to r)$ is a tautology. (05 Marks)
 - b. Prove the logical equivalence $(p \rightarrow q) \land [\sim q \land (r \lor \sim q)] \Leftrightarrow (q \lor p)$ by using the laws of logic. (05 Marks)
 - c. For any propositions p and q, prove the following:

i)
$$\sim (p \downarrow q) \Leftrightarrow \sim p \uparrow \sim q$$

ii)
$$\sim (p \uparrow q) \Leftrightarrow \sim p \downarrow \sim q$$

(04 Marks)

d. Test the validity of the following argument:

$$p \rightarrow q$$

$$r \rightarrow s$$

$$t \lor \sim s$$

$$\sim t \lor u$$

$$\sim u$$

$$\therefore \sim p$$

(06 Marks)

- 3 a. Define an open statement. Write the negation of "If k, m and n are any integers where (k m) and (m n) are odd then (k n) is even". (06 Marks)
 - b. For the universe of all integers, let p(x) : x > 0, q(x) : x is even, r(x) : x is a perfect square, s(x) : x is divisible by 3, t(x) : x is divisible by 7. Write the following statements in symbolic form and indicate their truth value:
 - i) At least one integer is even.
 - ii) There exists a positive integer that is even.
 - iii) If x is even and a perfect square then x is not divisible by 3.
 - iv) If x is odd or is not divisible by 7 then x is divisible by 3. (08 Marks)
 - c. Give i) A direct proof, ii) An indirect proof and iii) Proof by contradiction, for the following statement: "If n is an odd integer, then n + 9 is an integer". (06 Marks)

- 4 a. Prove by mathematical induction: $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(4n^2-1)}{3}$. (05 Marks)
 - b. Prove by induction $n! > 2^n$ for all the integers $n \ge 4$. (05 Marks)
 - c. Obtain a recursive definition for the sequence { a_n } in each of the following:
 i) 3n + 7
 ii) n (n + 2)
 iii) 2 (-1)ⁿ
 (06 Marks)
 - d. A sequence $\{a_n\}$ is defined recursively by $a_1 = 4$, $a_n = a_{n-1} + n$ for $n \ge 2$. Find $\{a_n\}$ in explicit form. (04 Marks)
- 5 a. Define the Cartesian product of two sets. For any non-empty sets A, B and C, prove that $A \times (B C) = (A \times B) (A \times C)$ (05 Marks)
 - b. For the sets $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$ and the relations $R = \{(a, 1), (b, 1), (c, 2), (c, 3)\}$ and $S = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$ from A to B. Compute $M_{(R \cup S)}$, $M_{(R \cap S)}$, $M_{(R \cap S)}$, and $M_{(\overline{S})}$.

 (04 Marks)
 - c. Let $A = \{1, 2, 3, 4, 5\}$. Define a relation R on A×A by (x_1, y_1) R (x_2, y_2) iff $x_1 + y_1 = x_2 + y_2$.

 i) Verify that R is an equivalence relation on A×A. ii) Determine the equivalence classes of [(1, 3)], [(2, 4)] and [(1, 1)].
 - d. If R is a relation on the set A = { 1, 2, 3, 4, 6, 12 } defined by xRy iff x divides y. Prove that (A, R) is a poset. Draw its Hasse diagram. (05 Marks)
- 6 a. State the Pigeonhole principle. Prove that if 30 dictionaries in a library contain a total of 61,327 pages then at least one of the dictionaries must have at least 2045 pages. (05 Marks)
 - b. Define Stirling number of second kind. Let $A = \{1,2,3,4,5,6,7\}$ and $B = \{w,x,y,z\}$. Find the number of functions and the number of onto functions from A and B. (05 Marks)
 - c. Prove that a function $f: A \to B$ is invertible iff it is one to one and onto. (05 Marks)
 - d. Define the floor and ceiling functions. Let A = B = R. Determine the $\Pi_A(D)$ and $\Pi_B(D)$ for the set $D = \{(x, y) \mid x^2 + y^2 = 1\}$. (05 Marks)
- 7 a. Prove that a group G is abelian iff $(ab)^2 = a^2b^2$ for all $a, b \in G$. (05 Marks)
 - b. Define cyclic group. Prove that every subgroup of a cyclic group is cyclic. (05 Marks)
 - c. State and prove the Lagrange's theorem. (05 Marks)
 - d. The generator matrix for an encoding function $E: \mathbb{Z}_2^3 \to \mathbb{Z}_2^3$ is given by $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$
 - i) Find the code words assigned to 110 and 010.
 - ii) Obtain the associated parity-check matrix. (05 Marks)
- 8 a. Define group code. Let $E: \mathbb{Z}_2^m \to \mathbb{Z}_2^n$, m < n be the encoding function given by a generator matrix G or the associated parity-check matrix H, then prove that $C = E(\mathbb{Z}_2^m)$ is a group code. (10 Marks)
 - b. Define a ring and an integral domain. Let R be a commutative ring with unity. Prove that R is an integral domain iff for all a, b, $c \in R$ where $a \ne 0$, $ab = ac \Rightarrow b = c$. (10 Marks)

* * * * *